45 research outputs found

    Structured low-rank matrix learning: algorithms and applications

    Full text link
    We consider the problem of learning a low-rank matrix, constrained to lie in a linear subspace, and introduce a novel factorization for modeling such matrices. A salient feature of the proposed factorization scheme is it decouples the low-rank and the structural constraints onto separate factors. We formulate the optimization problem on the Riemannian spectrahedron manifold, where the Riemannian framework allows to develop computationally efficient conjugate gradient and trust-region algorithms. Experiments on problems such as standard/robust/non-negative matrix completion, Hankel matrix learning and multi-task learning demonstrate the efficacy of our approach. A shorter version of this work has been published in ICML'18.Comment: Accepted in ICML'1

    Scaled stochastic gradient descent for low-rank matrix completion

    Full text link
    The paper looks at a scaled variant of the stochastic gradient descent algorithm for the matrix completion problem. Specifically, we propose a novel matrix-scaling of the partial derivatives that acts as an efficient preconditioning for the standard stochastic gradient descent algorithm. This proposed matrix-scaling provides a trade-off between local and global second order information. It also resolves the issue of scale invariance that exists in matrix factorization models. The overall computational complexity is linear with the number of known entries, thereby extending to a large-scale setup. Numerical comparisons show that the proposed algorithm competes favorably with state-of-the-art algorithms on various different benchmarks.Comment: Accepted to IEEE CDC 201

    Riemannian preconditioning for tensor completion

    Full text link
    We propose a novel Riemannian preconditioning approach for the tensor completion problem with rank constraint. A Riemannian metric or inner product is proposed that exploits the least-squares structure of the cost function and takes into account the structured symmetry in Tucker decomposition. The specific metric allows to use the versatile framework of Riemannian optimization on quotient manifolds to develop a preconditioned nonlinear conjugate gradient algorithm for the problem. To this end, concrete matrix representations of various optimization-related ingredients are listed. Numerical comparisons suggest that our proposed algorithm robustly outperforms state-of-the-art algorithms across different problem instances encompassing various synthetic and real-world datasets.Comment: Supplementary material included in the paper. An extension of the paper is in arXiv:1605.0825

    Topological Interference Management with User Admission Control via Riemannian Optimization

    Full text link
    Topological interference management (TIM) provides a promising way to manage interference only based on the network connectivity information. Previous works on the TIM problem mainly focus on using the index coding approach and graph theory to establish conditions of network topologies to achieve the feasibility of topological interference management. In this paper, we propose a novel user admission control approach via sparse and low-rank optimization to maximize the number of admitted users for achieving the feasibility of topological interference management. To assist efficient algorithms design for the formulated rank-constrained (i.e., degrees-of-freedom (DoF) allocation) l0-norm maximization (i.e., user capacity maximization) problem, we propose a regularized smoothed l1- norm minimization approach to induce sparsity pattern, thereby guiding the user selection. We further develop a Riemannian trust-region algorithm to solve the resulting rank-constrained smooth optimization problem via exploiting the quotient manifold of fixed-rank matrices. Simulation results demonstrate the effectiveness and near-optimal performance of the proposed Riemannian algorithm to maximize the number of admitted users for topological interference management.Comment: arXiv admin note: text overlap with arXiv:1604.0432

    Riemannian joint dimensionality reduction and dictionary learning on symmetric positive definite manifold

    Full text link
    Dictionary leaning (DL) and dimensionality reduction (DR) are powerful tools to analyze high-dimensional noisy signals. This paper presents a proposal of a novel Riemannian joint dimensionality reduction and dictionary learning (R-JDRDL) on symmetric positive definite (SPD) manifolds for classification tasks. The joint learning considers the interaction between dimensionality reduction and dictionary learning procedures by connecting them into a unified framework. We exploit a Riemannian optimization framework for solving DL and DR problems jointly. Finally, we demonstrate that the proposed R-JDRDL outperforms existing state-of-the-arts algorithms when used for image classification tasks.Comment: European Signal Processing Conference (EUSIPCO 2018

    Riemannian stochastic variance reduced gradient on Grassmann manifold

    Full text link
    Stochastic variance reduction algorithms have recently become popular for minimizing the average of a large, but finite, number of loss functions. In this paper, we propose a novel Riemannian extension of the Euclidean stochastic variance reduced gradient algorithm (R-SVRG) to a compact manifold search space. To this end, we show the developments on the Grassmann manifold. The key challenges of averaging, addition, and subtraction of multiple gradients are addressed with notions like logarithm mapping and parallel translation of vectors on the Grassmann manifold. We present a global convergence analysis of the proposed algorithm with decay step-sizes and a local convergence rate analysis under fixed step-size with some natural assumptions. The proposed algorithm is applied on a number of problems on the Grassmann manifold like principal components analysis, low-rank matrix completion, and the Karcher mean computation. In all these cases, the proposed algorithm outperforms the standard Riemannian stochastic gradient descent algorithm

    Low-rank tensor completion: a Riemannian manifold preconditioning approach

    Full text link
    We propose a novel Riemannian manifold preconditioning approach for the tensor completion problem with rank constraint. A novel Riemannian metric or inner product is proposed that exploits the least-squares structure of the cost function and takes into account the structured symmetry that exists in Tucker decomposition. The specific metric allows to use the versatile framework of Riemannian optimization on quotient manifolds to develop preconditioned nonlinear conjugate gradient and stochastic gradient descent algorithms for batch and online setups, respectively. Concrete matrix representations of various optimization-related ingredients are listed. Numerical comparisons suggest that our proposed algorithms robustly outperform state-of-the-art algorithms across different synthetic and real-world datasets.Comment: The 33rd International Conference on Machine Learning (ICML 2016). arXiv admin note: substantial text overlap with arXiv:1506.0215

    A Sparse and Low-Rank Optimization Framework for Index Coding via Riemannian Optimization

    Full text link
    Side information provides a pivotal role for message delivery in many communication scenarios to accommodate increasingly large data sets, e.g., caching networks. Although index coding provides a fundamental modeling framework to exploit the benefits of side information, the index coding problem itself still remains open and only a few instances have been solved. In this paper, we propose a novel sparse and low- rank optimization modeling framework for the index coding problem to characterize the tradeoff between the amount of side information and the achievable data rate. Specifically, sparsity of the model measures the amount of side information, while low- rankness represents the achievable data rate. The resulting sparse and low-rank optimization problem has non-convex sparsity inducing objective and non-convex rank constraint. To address the coupled challenges in objective and constraint, we propose a novel Riemannian optimization framework by exploiting the quotient manifold geometry of fixed-rank matrices, accompanied by a smooth sparsity inducing surrogate. Simulation results demonstrate the appealing sparsity and low-rankness tradeoff in the proposed model, thereby revealing the tradeoff between the amount of side information and the achievable data rate in the index coding problem.Comment: Simulation code is available at https://bamdevmishra.com/indexcoding

    A two-dimensional decomposition approach for matrix completion through gossip

    Full text link
    Factoring a matrix into two low rank matrices is at the heart of many problems. The problem of matrix completion especially uses it to decompose a sparse matrix into two non sparse, low rank matrices which can then be used to predict unknown entries of the original matrix. We present a scalable and decentralized approach in which instead of learning two factors for the original input matrix, we decompose the original matrix into a grid blocks, each of whose factors can be individually learned just by communicating (gossiping) with neighboring blocks. This eliminates any need for a central server. We show that our algorithm performs well on both synthetic and real datasets.Comment: Appeared in the Emergent Communication Workshop at NIPS 201

    A Riemannian gossip approach to decentralized matrix completion

    Full text link
    In this paper, we propose novel gossip algorithms for the low-rank decentralized matrix completion problem. The proposed approach is on the Riemannian Grassmann manifold that allows local matrix completion by different agents while achieving asymptotic consensus on the global low-rank factors. The resulting approach is scalable and parallelizable. Our numerical experiments show the good performance of the proposed algorithms on various benchmarks.Comment: Under revie
    corecore